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A characterization of existence of Descartes systems in Haar subspaces is given.
Moreover, it is shown that the functions in such systems can be represented as
products of piecewise strictly monotone functions. © 1989 Academic Press. Inc.

INTRODUCTION

Let M be a subset of IR which contains at least n points and let
F(M) = {f: M --t IR}. Moreover, let U denote an n-dimensional subspace of
F(M). A Descartes basis in U is a basis {Ul' ..., Un} of U such that, for any
1~ i I < ... < im ~ n and any points t 1 < ... < tm in M,

1~ m ~ n. Such a basis {Ul' ..., Un} is also called a Descartes system in U on
M. A system {u b ... , un} in U is called a Markoff system if, for any points
t I < ... < tm in M,

1~ m ~ n. Moreover, a system {u l' ... , Un} in U is called a sign-regular
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Descartes system if, for any 1:::; i 1 < ... < im :::; n, there exists an e E { -1, 1}
such that, for any t 1 < ... < tm in M,

1:::; m:::; n. Analogously we define sign-regular Markoff systems in U.
A Markoff system {u l' ... , Un} in U is called normed if u 1 == 1 on M.
(Obviously, if M is an interval, then every Descartes (resp. Markoff)
system is a sign-regular Descartes (resp. Markoff) system.)

It is well known that U is' called a Haar subspace of F(M), if there exists
a basis {Ul' ..., Un} in U such that for any points t 1 < ... < tn in M,

In the following we are interested in such Haar spaces which admit
Descartes systems. We give a sufficient condition ensuring the existence of
Descartes systems. Under some weak additional hypotheses we are able to
prove the more difficult converse result. In particular it follows that if M
is a closed interval, then there exists a Descartes system in a subspace U
of C(M) if and only if for every interval M~ M there exists a Haar sub
space V of C(M) such that VI M = U. We give an example of a Haar sub
space U of C(M) where M = [a, b] such that U does not admit a Descartes
system on (a, b) which implies that U cannot be extended to a Haar space
on (a - d, b) or on (a, b + d) for any d> O. Moreover, we show that the
functions in a Descartes system can be represented as products of piecewise
strictly monotone functions. Finally, from the above results we derive a
characterization of those normed sign-regular Markoff systems which
admit sign-regular Descartes systems using integral representations.

Independently and simultaneously Zalik and Zwick [5] have also
studied the problem of existence of Descartes systems in Haar spaces and
have obtained the statement of Corollary 2.4 and a statement similar to
Theorem 2.2.

1. REPRESENTATION OF DESCARTES SYSTEMS

In this section we give a representation of Descartes systems.

THEOREM 1.1. Let {U l' ... , Un} C F(M) be a Descartes system. Then

(1) there exist functions w;EF(M), 1 :::;i:::;n-1, such that

1:::;i:::;n-1,
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where Wi is strictly monotone on every connected component of M and
Wi( x) # 0 for every x E M, 1~ i ~ n - 1;

(2) if Ui has constant sign on M, 1 ~ i ~ n, and if for each 1 ~ i ~
n - 1, D (~; ~~+ 1) has constant sign for any points t1< t2 in M, the functions
Wi are even strictly monotone on M, 1~ i ~ n - 1;

(3) if Ui > 0 on M, 1~ i ~ n, and iffor all i, j E {l, ..., n}, i # j, D (~; ~;)

has constant sign for any points t I < t2 in M, the system {u I' ••• , Un} can be
rearranged to the system {U'l' ... , ud such that there exist strictly increasing
functions WiEF(M), 1~i~n-l with

1~j~n-l;

(4) ifuiEC(M), l~i~n, then Wi,WiEC(M), l~i~n-1.

Proof (1) Since by hypothesis span {u I' u2} is a Haar subspace of
F(M), and u;(x) # 0 for every x E M, i = 1, 2, span {l, u2/ud is also a Haar
space on M. This implies that U2/U I is strictly monotone on every connec
ted component of M. Hence U2 = U I WI where WI has the desired property.

Repeated application of this argument to the Haar spaces
span {u2, u3}, ..., span {un_ I' un} yields functions Wi = Ui+dui, 2 ~ i ~
n - 1, such that Wi is strictly monotone on every connected component of
M. Hence

l~i~n-1.

(2) Assume that WI is not strictly monotone on M. We only consider
the case when Wl(tI)<WI(t2»WI(t3) for some points t l <t2<t3 in M.
Then the proof of (1) implies that U2(t l )/udt l ) < U2(t2)/U I (t 2)> U2(t3)/U I(t3)'

Since U I and U 2 have constant sign on M, it follows that

a contradiction.
Using the proof of (l) and the above arguments we can show that also

the function Wi is strictly monotone on M for 2 ~ i ~ n - 1.

(3) Since by hypothesis span {u i , uj } is a Haar subspace of F(M) for
any i,j E {l, ..., n}, i # j, and U i has constant sign on M, 1~ i ~ n, it follows
from (1), (2) that ujuj is strictly monotone on M.

If Ui+ dUi is strictly increasing on M for every 1 ~ i ~ n - 1, then setting
Wi=ui+dui we obtain

l~i~n-l,

and the statement follows.
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In the other case we rearrange the system {U I' ... , Un} as follows: Assume
that the rearrangement {U il ' Ui2 ' ••• , u;J is given. Moreover assume that for
some integer ijE {l, ..., n -I}, Uij+jU iJ is strictly decreasing on M. Then we
define a new arrangement by

It is easily verified that the same arrangement cannot occur twice. There
fore, since there are only a finite number of distinct arrangements, we
arrive after a finite number of steps at a system {u,1' ..., u;J such that
u'J+ jU'j is strictly increasing on M, 1 ~j ~ n - 1.

Then setting wj = u'J+ jU'j we obtain

1~j~ n-1.

(4) The statement follows directly from the proof of (1 H 3).

COROLLARY 1.2. If {UI' ..., Un} is a Descartes system in C[a, b] where
[a, b] is a real compact interval, then there exist functions Wi E C[a, b],
1~ i ~ n - 1, which are strictly monotone on [a, b] such that

l~i~n-1.

If in particular ui> 0 on [a, b], 1~ i ~ n, then {UI' ..., Un} can be rearranged

to a system {U'l' ..., U'n} such that

l~j~n-l,

where Wi is a strictly increasing function in C[a, b], 1~ i ~ n - 1.

The converse of Theorem 1.1 is not true for n ~ 3 in general as the
following example shows.

EXAMPLE 1.3. Let the functions {u l , U2' u3 } c C[O, n] be defined by
Ul(X) = 1, U2(X) = w1(x), u3(x) = wl(x) w2(x) for every x E [0, n] where
wI(x)= I/(cosx+2) and w2(x)=x+ 1. Obviously, WI and W2 are strictly
increasing and positive on [0, n].

But span {u I' U2 , U3} is not a Haar space on [0, n], since the function
u(x) = (cos x + (2In) x -1 )/(cos x + 2) has the zeros 0, n12, n.

2. MAIN RESULTS

We begin by glVmg a sufficient condition ensuring the existence of
Descartes systems.

640157/1-8
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THEOREM 2.1. Let V denote an n-dimensional Haar subspace of F(M).
Assume that there exist distinct points Z I> ... , zn in IR\M such that there exists
an n-dimensional Haar subspace fJ of F (M) where M = M u {z l' ... , Z n }

satisfying fJ 1M = U. Then there exists a Descartes system {u l' ... , Un} in V
on M.

Proof Since fJ is a Haar space on M, there exist (unique) functions
u; E fJ defined by

1~ i,j~n.

Set Ui=uiI M, l~i~n, and let {Ui1, ...,UiJ be a subsystem of {u1, ...,un }.

Then Uij(Zr) = 0 for every r E {l, ..., n} \ {iI' ..., im }. Hence every nontrivial
function U Espan {U i1 ' ..., uiJ has at most m - 1 zeros in M. This implies
that span {U i1 , ..., uiJ is a Haar subspace of F(M).

Thus we have shown that {u l' ... , Un} is a Descartes system in V on M.

Remark. Let V denote an n-dimensional Haar subspace of C[a, b]
where [a, b] is a compact real interval and let 0 < e < b - a be given. Then
fJ = VI [a + e. b] contains a sign-regular Descartes system.

Under some weak additional hypotheses we now prove the more difficult
converse of Theorem 2.1.

THEOREM 2.2. Let inf M rf- M, sup M rf- M, inf ME IR, and for any points
x, y E M with x < y there exists a point Z E M with x < Z < y. Set
M = {inf M} u M. Assume that V is an n-dimensional subspace of F(M)
which contains a sign-regular Descartes system {U 1, ..., Un} on M. Then
for every d>O there exists a space Vd=span {U1, ...,Un } on (infM-d,
inf M) u M such that

VdIM=V; (2.1)

every function u E V d is continuous on (inf M - d, inf M]; (2.2)

for any points t 1 < ... < tn in (inf M - d, inf M) u M,

where e E { -1, I}; i.e. V d is a Haar space. (2.3 )

If in particular 1 E V, then there exists a normed sign-regular
Markoff system in V d . (2.4)

The proof of the above theorem is based on the following result.
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LEMMA 2.3. Let M and Mbe defined as in Theorem 2.2. Moreover, let U
denote an n-dimensional subspace of F(M) such that there exist
liml~SUPM,'EMu(t)for every UE U and a system {u l , ..., un} in U with U I == 1
on M and

for any 2~il<···<im~n and any points tl<···<tm+ 1 in M where
E = E(il, ... , im) E { -1, 1}, 1~ m ~ n - 1. Then there exists a sign-regular
Descartes system {v I' ... , vn} in U on M.

Proof Define a system {v I' ... , Vn} in U by

VI == 1

v,=u,-( lim u,(t)),
t -; ~uA1M

2 ~ i~n.

Since by assumption liml~suPM,'EMu,(t)is a real number, every Vi is well
defined on M, 2 ~ i ~ n.

We show that this system has the desired property. To do this let
{vil, ,vjJ be a subsystem where l~JI<"·<Jm~n.IfJI=l, then span
{vil ' , vjJ = span {UI' uh ' ..., ujJ and the statement follows immediately.

Therefore let JI > 1. Assume that the statement is false. Then by
Lemma 3.1 in [2] there exists a function vE span {vjl ' ... , vjJ and points
Xl < ... <xm + 1 in M satisfying

( -1)' v(x,) ~ 0, l~i~m+1.

Since JI> 1, it follows from the definition of V 2 , ... , V n that
liml~suPM,'EMv(t)=O.Th~refore and by the properties of M there exist
points Yl < ... <Ym+2 in M such that

(-1)' (v(y,+ d - V(Yi)) ~ 0, 1~i~m+ 1.

This contradicts Theorem 8.8 in [2], because VE span {u 1 , ujl ' ..., ujJ a~d

by hypothesis this system is a normed sign-regular Markoff system on M.

Proof of Theorem 2.2. We may assume that U i >°on M, 1~ i ~ n. Let
d> °be given. We proceed by induction on n. For n = 1 the statement is
easily verified. Assuming the result holds for n - 1, we now prove it for n.

At first it follows from Theorem 1.1 that there exists a rearrangement
{U /l ' ... , ud of {u l , ..., un} such that

1~J~n -1,
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where w; is strictly increasing and positive on M, 1~ i ~ n - 1. Without loss
of generality we may assume that Ii = j, 1~j ~ n, and U I == 1. Then

1~j~ n - 1.

Since Un is strictly increasing on M, there exists the function u;; I and
therefore the functions

1~j~n-1,

where w;=w;ou;;l,l~i~n-1. Then obviously v;EF(D) where D=
un(M), 1~ i ~ n, and w; is strictly increasing and positive on D,
1~ i~ n - 1. Moreover it follows that v I == 1 and vn(x) =x for every x E D.

Set D = un(M), a = inf D, b = sup D. It is easily verified (see Lemma 14.2
in [2]) that inf D ¢ D, sup D ¢ D, inf D E IR, and for any points x, y E D
with x < y there exists a point ZED with x < Z < y. Moreover Lemma 14.2
in [2] implies that {v I' ... , vn } is a sign-regular Descartes system on D.

Let V = span {VI' ... , vn }. Then the space V and the set D have the same
properties as the space U and the set M. In addition, V contains the
functions v I == 1 and vn(x) = x (x ED) which will be necessary for our later
considerations.

Now using Theorem 11.3 in [2] there exists, for any v E Vand any xED,

() I
. v(t)-v(x)

D+v x = 1m .
'i-;:f vn(t) - vn(x)

This implies that D + VI == 0 and D + Vn == 1. Moreover, since V2' ... , Vn and
WI' ..., Wn _ I are strictly increasing and positive on D, for any XED and
2~ i~n,

where KE IR.
Since by hypothesis {v I' ... , Vn} is a sign-regular Descartes system on 15

and VI == 1 on D, it follows from Theorem 11.3 in [2J that

(2.5)
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for any 2 ~il < ,.. <im ~ n -I and any points /1 < ... < /m+ I in D where
e=e(jl,.",im)E{-I,I}, O~m~n-2. In particular, D+v; is strictly
monotone on D, 2~i~n-1. Hence there exist limx~a,XEDD+v;(x) and
limx~ b.x E D D + V;(x), 2 ~ i ~ n - 1. Set D + vi(a) = lim, ~ a,x E D D + v;(x),
2~i~n-l, and D+V=span{D+vn ,D+v2 , ... ,D+vn _d. Then by
Lemma 12.1 and Lemma 12.2 in [2] and the above definition of D + v;(a),
D+ VcC+(15)= {JEF(15):fis continuous from the right}.

Then as in the proof of Proposition 2.7 we can show that

for any 2 ~il < ... <im ~ n-1 and any points /1 < ... < /m+ I in 15 where
e=e(jl, ...,im)E {-I, I}.

Now by Lemma 2.3 there exists a sign-regular Descartes system
{h I' ..., hn _ I} in D + V on 15 where hi == 1 on 15.

Now let a> 0 be given. Then by the induction hypothesis there exists a
space D+ Va=span {hj, ...,hn-d on (a-a,a)u15 satisfying (2.1)-(2.3).
Since 1 ED + V, by the induction hypothesis we may assume that
{hI' ..., hn-d is a normed sign-regular Markoff system in D+ Va. By
Lemma 14.3 in [2] there exists an n-dimensional weak Chebyshev
subspace V of C(I) where 1= (a, b) (i.e., if (e I' ... , en) is a basis of V, then
for any points t l < ... < tn in (a, b), eD(~\ ...~~);:::O where eE {-I, I}) such
that

for every VE V and every x E I, there exists

D -() I' v(t)-v(x)
+ v x = 1m ;

t~x+ t-x

D + V is an (n - 1)-dimensional weak Chebyshev space
D+ VID=D+ V;

for every VE V.

(2.6 )

(2.7)

with
(2.8 )

(2.9)

Hence there exists a basis {n I' ..., nn _I} of D + V such that n; ID = h;,
1~ i~ n - 1. We set D + Va = span {g I' ..., gn _ I} where

if x E (a - a, a]

if xEI,

1~ i~ n - 1. This implies that D + Va 1/ = D + V and D + Va c C + (l) where
1= (a - a, b). Since {h I' ..., hn _ I} is a normed sign-regular Markoff system
in D + Va, it is obvious that span {gI' ... , gi} is an i-dimensional weak
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Chebyshev space, 1~ i ~ n - 1. Otherwise for some i E {I, , n - I} there
would exist a function gE span {gI' ... , gi} and points x 1< < Xi in 1with
( -1)j g(xj ) > 0, 1~j ~ i. Then using the construction of V in the proof of
Lemma 14.3 in [2] we obtain a function gE span {hi, ..., li;} and i points
YI < ... <Yi in (a - d, a) u 15 with (-I)j g(Yj) > 0, 1~j ~ i, a contradiction.
Now for every i E {I, ... , n - I} we define

Wi = {w E C(1): w(x) =rg(t) dt + iX, gE span {gl' ... , gi}, cE 1, XE 1}

Since every gEe + (1), the set Wi is well defined. (This was the reason for
transforming the given space U to the space V.) Moreover, it follows from
Lemma 13.2 in [2] that Wi is an (i + 1)-dimensional weak Chebyshev
subspace of c(1).

Now we show that there exists a basis {fa, ...Ji} of Wi' 1~ i ~ n - 1,
such that fa == 1 on 1and

(2.10)

for any points to<···<ti in 15 where 15=(a-d,a)u15 and cE{-I, I}.
Assume that there exist points to < ... < ti+I in 15 and a function
fE W i \ {O} such that

(-I)j (f(tj+ I) - f(tj)) ~O, 0 ~j~ i.

By definition of Wi there is a function g E span {gI' ..., g i} with

f
1J + 1

(-I)j g(t)dt~O,
,)

O~j~ i.

Assume that for some j, (- 1Vg( t) < 0 for every t E 15 n (tj , tj + 1). Since
by construction of V (see Lemma 14.3 in [2]) every gED+ Va is piecewise
constant on 7\15, it follows that (-I)j g(t) < 0 for every t E (tj' tj+d. Then
gEe+ (1) implies that

f
!J+ 1

( -1)j . g(t) dt < 0, a contradiction.
I)

Thus we have shown that for every j E {O, ..., i} there exists a point
ZjE(tj,tj+dn15 such that (-I)jg(zJ~O. However, this contradicts
Lemma 3.1 in [2]. Then (2.10) follows from Lemma 8.2 in [2].

It follows from Lemma 14.5 in [2] that WIj}=V where W=Wn _ l ·

Now using the extension Wof V we can easily obtain the desired extension
of U. To do this define Un (X ) = un(x) for every x E M, un(inf M - d) =
a - d, Un continuous and strictly increasing on [inf M - d, inf M]. Set
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Ud=span UOoUn, ...,fn-j oUn}· Then by the construction of V and by
Lemma 14.2 in [2] Ud has the desired properties (2.1 )-(2.3). This proves
Theorem 2.2.

Remark. Under the assumptions sup M EO lR and M= {sup M} u M,
the space U can be extended to a subspace Vd defined on
Mu (sup M, sup M + d) satisfying the properties (2.1 )-(2.3) (d> 0).

For the most important case when M is an interval the following equiv
alent statements are an immediate consequence of Theorem 2.1 and
Theorem 2.2.

COROLLARY 2.4. Let M = [a, b), a real subinterval, and let U denote an
n-dimensional subspace of C(M). Then the following conditions are equiv
alent:

There exists a Descartes system in U on M; (2.11)

For every d> 0 there exists an n-dimensional Haar subspace
UdofC((a-d,b)) such that UdIM=U. (2.12)

Analogously the Haar space V can be extended on the subinterval
(a, b + d) (resp. on [a, b + d)), if bE M (for every d> 0) and on the subin
terval (a - d, b + J), if M = [a, bJ (for every d> 0 and every J> 0).

It follows directly from the definitions that every Descartes system
{u j, ... , Un} is a Markoff system and that V =span {u 1> ... , un} is a Haar
space. Now we show that the converse is not true in general. Let [a, bJ be
a real subinterval and let U denote an n-dimensional Haar space on (a, b).
Then by Theorem 7.7 in [2] there exists a Markoff system in Von (a, b).
However, if U is a Haar space on [a, b) or on (a, b] or on [a, b], then the
above result is not true in general (see Sect. 10 in [2J). In particular this
implies that there exist Haar subspaces V which do not admit Descartes
systems.

Although every Haar space U on [a, bJ contains a Markoff system on
(a, b), U does not admit a Descartes system on (a, b) in general. Then
Corollary 2.4 implies that U cannot be extended to a Haar space on
(a-d, b] or on [a, b+d) for any d>O.

EXAMPLE 2.5. Let M=[-I,IJ and let U=span{u j ,u2,U3} where
u j (x)=I,u2(x)=x(1-x), and u3(X)=(l-x2)(1-x) for every
XE [-1,1].

CLAIM. V has no Descartes basis on ( -1, 1).

Proof In [2, Sect. lOJ it was verified that V is a Haar space on
[ -1, 1]. Moreover it was shown that U does not contain a two-dimen
sional Haar subspace. Hence U has no Descartes basis on [ -1, 1].
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Now assume that there exists a Descartes basis {VI' V 2 , V3} of U on
(-1, 1). At first we show that v;(x) #- 0 for every x E [ -1, 1] and some
i E {l, 2, 3}. Suppose that for i = 1, 2, 3, v;( -1) = 0 or v;(1) = O. Since
v;( -1) = 0 for every i E {I, 2, 3} contradicts the Haar property of U on
[ -1, 1], we may assume that v I ( -1) #- 0 and v ,(I) = O. Since span {vd is
a Haar space on (-1, 1), it follows that VI (x) #- 0 for every x E ( -1, 1).
Hence VI = cu 3 where c is a nonzero real number. This implies that
V I ( - 1) = 0, a contradiction.

Thus we have shown that for some i E {l, 2, 3}, v;(x) #- 0 for every
XE [-1,1]. Without loss of generality we may assume that vl(x)#-O for
every x E [ -1, 1]. Since {VI' V 2 , v3 } is a Descartes basis of U on (-1, 1),
it follows that span {v I' v2 } satisfies the Haar property there. As mentioned
above U contains no two-dimensional Haar subspace. Hence there exists a
nontrivial function W = CI VI + C2 V2 with at most one zero in (-1, 1) and
at least two zeros in [- 1, 1]. Then the function W + dv I where d is
a sufficiently small real number has at least two zeros in (-1, 1), a
contradiction.

Now we study the class of those spaces which contain normed sign
regular Markoff systems. To do this let M and M be defined as in
Theorem 2.2. Moreover, let U denote an n-dimensional subspace of F(M)
which contains a normed sign-regular Markoff system on M. Then it
follows from [3, Theorem 3]:

There exist a basis {g I' ... , gn} of U, a strictly increasing function
hEF(M), continuous strictly increasing functions WI' ... , Wn _ 1 defined on
the interval J = (inf h(M), sup h(M)), and c E J such that for every x E M,

(2.13 )

THEOREM 2.6. The following conditions are equivalent:

There exists an n-dimensional subspace D of F(M) such that
1E D, D contains a sign-regular Descartes system on M, and
DIM= U; (2.14)

there exists a representation of the type (2.13) such that
infh(M)EIR and limw;(x) exists as x tends to infh(M),
l~i~n-l. (2.15)
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Proof We first show that (2.15) implies (2.14). Let d<inf M and
J < inf h(M) be some real numbers. We extend the functions hand
WI' ... , Wn_1 as follows: Let h(x)=h(x) for every XEM and let h be strictly
increasing on (d, inf M] u M. Let Wi( x) = Wi(x) for every x E J and let Wi be
strictly increasing and continuous on (J, inf h(M)] u J. Now we define for
c E J and every x E (d, inf M] u M,

gl(x) = 1

f
Ji(X)

g2(X) = c dwl(tl)

fii(X) fll fln - 2

gn(X)= c c'" c dWn_l(tn_d .. ·dwI(tl)·

Then it follows from [1] that span {g I' ... , gn} is a sign-regular Markoff
system on (d,infM]uM. Moreover it is obvious that g;(X)=gi(X) for
every x E M, 1 ::::; i ::::; n.

Set 0 = span {g ll,if, ..., gn l,if}. Then the statement (2.14) follows directly
from Theorem 2.1.

Now we show that (2.14) implies (2.15). Let d>O be given. Then by
Theorem 2.2 there exists a space 0d on M = (inf M - d, inf M) u M such
that 0d I,if = 0 and 0d contains a normed sign-regular Markoff system on
M. By [3, Theorem 3] there exists a representation of the type (2.13) for
Od on M.

This implies the statements in (2.15).

Finally we give a result concerning the extension of normed sign-regular
Markoff systems.

PROPOSITION 2.7. Let inf M rt M, inf ME IR. Assume that for any points
x, y E M with x < y there exists a point Z E M with x < Z < y. Set
M = {inf M} u M. Let V denote an n-dimensional subspace of F(M) such
that u( inf M) = lim ~ ~ inC M x E M U( X) for every u E U. Moreover assume that V
contains a normed sign-regular Markoff system {u I' ... , un} on M. Then this
system is even a normed sign-regular Markoff system on M.

Proof Let the system {u I' ... , ui } be given. Assume that there exists a
function ii E span {u l , ... , ui } \ {O} and points XI < ... < X i + I in M with
(-l)j ii(xj ) ~ 0, l::::;j::::; i + 1. By hypothesis, x 1= inf M. If there exists a
point Z E (x I' x 2)n M with ii(z)::::; 0, then setting YI = Z, Yj = xj' 2::::;j::::; i + 1,
we have

1 ::::;j::::;i+ 1,

a contradiction to Theorem 8.8 in [2].
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Therefore assume that ii(x) >°for every x E (XI' x 2 ) n M. Then it follows
from ii(infM)=lim~~infM.xEMii(x) that there exist two points y<z in
(XI' x 2 )nM with ii(y)<ii(z). Then setting YI =Y,Y2=z, and Yj=Xj,
3~j ~ i + 1, we have

a contradiction.

( - 1)j (ii( Yj + I ) - ii(Yj) ) ~ 0, 1~j~ i,

COROLLARY 2.8. Let M = (a, b) (resp. M = (a, b] and M = [a, b)) be a
real subinterval, and let U denote an n-dimensional subspace of C[a, b] such
that U has a normed Markoff system on (a, b). Then U has a normed
Markoff system on [a, b].

This result follows directly from Proposition 2.7.

REFERENCES

1. R. A. ZALlK, On transforming a Tchebycheff system into a complete Tchebycheff system,
J. Approx. Theory 20 (1977), 220-222.

2. R. ZIELKE, "Discontinuous tebysev Systems," Lecture Notes in Mathematics, Vol. 707,
Springer-Verlag, Berlin, 1979.

3. R. ZIELKE, Relative differentiability and integral representation of a class of weak Markov
systems, J. Approx. Theory 44 (1985), 30-42.

4. M. SOMMER AND H. STRAUSS, "Descartes Systems in Haar Subspaces," in Constructive
Theory of Functions 1987 (Sendov, Ed.), pp.428-432, Sofia, 1988.

5. R. A. ZALIK AND D. ZWICK, On extending the domain of definition of Cebysev and weak
Cebysev systems, 1987, preprint.

Printed in Belgium


